Role of contact-angle hysteresis for fluid transport in wet granular matter.

نویسندگان

  • Roman Mani
  • Ciro Semprebon
  • Dirk Kadau
  • Hans J Herrmann
  • Martin Brinkmann
  • Stephan Herminghaus
چکیده

The stability of sand castles is determined by the structure of wet granulates. Experimental data on the size distribution of fluid pockets are ambiguous with regard to their origin. We discovered that contact-angle hysteresis plays a fundamental role in the equilibrium distribution of bridge volumes, and not geometrical disorder as commonly conjectured. This has substantial consequences on the mechanical properties of wet granular beds, including a history-dependent rheology and lowered strength. Our findings are obtained using a model in which the Laplace pressures, bridge volumes, and contact angles are dynamical variables associated with the contact points. While accounting for contact line pinning, we track the temporal evolution of each bridge. We observe a crossover to a power-law decay of the variance of capillary pressures at late times and a saturation of the variance of bridge volumes to a finite value connected to contact line pinning. Large-scale simulations of liquid transport in the bridge network reveal that the equilibration dynamics at early times is well described by a mean-field model. The spread of final bridge volumes can be directly related to the magnitude of contact-angle hysteresis.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Can dynamic contact angle be measured using molecular modeling?

A method is presented for determining the dynamic contact angle at the three-phase contact between a solid, a liquid, and a vapor under an applied force, using molecular simulation. The method is demonstrated using a Lennard-Jones fluid in contact with a cylindrical shell of the fcc Lennard-Jones solid. Advancing and receding contact angles and the contact angle hysteresis are reported for the ...

متن کامل

Pore-scale contact angle measurements at reservoir conditions using X-ray microtomography

Contact angle is a principal control of the flow of multiple fluid phases through porous media; however its measurement on other than flat surfaces remains a challenge. A new method is presented for the measurement of the contact angle between immiscible fluids at the pore scale at reservoir conditions (10 MPa and 50 C) inside a quarry limestone through the use of X-ray microtomography. It is a...

متن کامل

Lattice Boltzmann modeling of contact angle and its hysteresis in two-phase flow with large viscosity difference.

Contact angle hysteresis is an important physical phenomenon omnipresent in nature and various industrial processes, but its effects are not considered in many existing multiphase flow simulations due to modeling complexity. In this work, a multiphase lattice Boltzmann method (LBM) is developed to simulate the contact-line dynamics with consideration of the contact angle hysteresis for a broad ...

متن کامل

ar X iv : c on d - m at / 9 90 83 59 v 1 2 5 A ug 1 99 9 Dilatancy and friction in sheared granular media

We introduce a simple model to describe the frictional properties of granular media under shear. We model the friction force in terms of the horizontal velocity ẋ and the vertical position z of the slider, interpreting z as a constitutive variable characterizing the contact. Dilatancy is shown to play an essential role in the dynamics, inducing a stick-slip instability at low velocity. We compu...

متن کامل

Memory of the unjamming transition during cyclic tiltings of a granular pile.

Discrete numerical simulations are performed to study the evolution of the microstructure and the response of a granular packing during successive loading-unloading cycles, consisting of quasistatic rotations in the gravity field between opposite inclination angles. We show that internal variables--e.g., stress and fabric of the pile--exhibit hysteresis during these cycles due to the exploratio...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Physical review. E, Statistical, nonlinear, and soft matter physics

دوره 91 4  شماره 

صفحات  -

تاریخ انتشار 2015